∆ 1 - Completions of a Poset Mai Gehrke & Ramon Jansana

نویسنده

  • ALESSANDRA PALMIGIANO
چکیده

A join-completion of a poset is a completion for which each element is obtainable as a supremum, or join, of elements from the original poset. It is well known that the join-completions of a poset are in one-to-one correspondence with the closure systems on the lattice of up-sets of the poset. A ∆1-completion of a poset is a completion for which, simultaneously, each element is obtainable as a join of meets of elements of the original poset and as a meet of joins of elements from the original poset. We show that ∆1-completions are in one-to-one correspondence with certain triples consisting of a closure system of down-sets of the poset, a closure system of up-sets of the poset, and a binary relation between these two systems. Certain ∆1-completions, which we call compact, may be described just by a collection of filters and a collection of ideals, taken as parameters. The compact ∆1-completions of a poset include its MacNeille completion and all its joinand all its meetcompletions. These completions also include the canonical extension of the given poset, a completion that encodes the topological dual of the poset when it has one. Finally, we use our parametric description of ∆1-completions to compare the canonical extension to other compact ∆1-completions identifying its relative merits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Δ1-completions of a Poset

A join-completion of a poset is a completion for which each element is obtainable as a supremum, or join, of elements from the original poset. It is well known that the join-completions of a poset are in one-to-one correspondence with the closure systems on the lattice of up-sets of the poset. A ∆1-completion of a poset is a completion for which, simultaneously, each element is obtainable as a ...

متن کامل

Canonical extensions for congruential logics with the deduction theorem

We introduce a new and general notion of canonical extension for algebras in the algebraic counterpart AlgS of any finitary and congruential logic S. This definition is logic-based rather than purely order-theoretic and is in general different from the definition of canonical extensions for monotone poset expansions, but the two definitions agree whenever the algebras in AlgS are based on latti...

متن کامل

Topological Duality and Algebraic Completions

In this chapter we survey some developments in topological duality theory and the theory of completions for lattices with additional operations paying special attention to various classes of residuated lattices which play a central role in substructural logic. We hope this chapter will serve as an introduction and invitation to these subjects for researchers and students interested in residuate...

متن کامل

Macneille Completions and Canonical Extensions

Let V be a variety of monotone bounded lattice expansions, that is, bounded lattices endowed with additional operations, each of which is order preserving or reversing in each coordinate. We prove that if V is closed under MacNeille completions, then it is also closed under canonical extensions. As a corollary we show that in the case of Boolean algebras with operators, any such variety V is ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017